If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-4=56
We move all terms to the left:
3p^2-4-(56)=0
We add all the numbers together, and all the variables
3p^2-60=0
a = 3; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·3·(-60)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*3}=\frac{0-12\sqrt{5}}{6} =-\frac{12\sqrt{5}}{6} =-2\sqrt{5} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*3}=\frac{0+12\sqrt{5}}{6} =\frac{12\sqrt{5}}{6} =2\sqrt{5} $
| -28c(6+1=0 | | 3(8x-3)=-6(7-5x+1) | | p^2-3p-35=-7 | | 2x+16=6(3x+7)-10 | | 0.50r+15.75=25 | | 2a+4=a+26 | | x/8=312x8=3/12 | | 7x-2=6-x | | 2a+4=a26 | | -48=8x-4(x-8) | | h÷-23=2 | | 0.02x=0.1x+2 | | X.8^x=32 | | 3x/6x-2=5/9 | | 12x-4(1/2x-5)=1/3(6x-5) | | -6m-3=15 | | -8=9x+-17 | | 5/6b=-25 | | 9(3b-5)=-7(-5-7) | | -8x-50+3x=10 | | 48=-10x-2 | | 6m-10=110 | | 2(x-7)+4x=22 | | 258=2x+33 | | 3(x)=(3+2x) | | |2x+5|=–3x+5 | | 4x+1x=56-2x | | -6+m/10=-8 | | 6x+3=8x-20 | | 16=3w-17 | | 5x-1+12x+7=57 | | (-7)x=21 |